Logarithms Practice - 9/26/16

1. What is $\log _{4}(16)$?

Solution: $4^{2}=16$, so $\log _{4}(16)=2$.
2. Solve for $x: 4 \log _{3}(9 x)=16$.

Solution: We first divide both sides by 4 to get $\log _{3}(9 x)=4$. Then to get rid of the $\log _{3}$, we raise 3 to both sides to get $9 x=3^{4}$. We then divide by $9=3^{2}$ to get $x=3^{2}=9$.
3. Solve for $x: \log _{2}(x)+\log _{4}(x)=0$.

Solution: To get rid of the log, we raise 4 to both sides to get $4^{\log _{2}(x)+\log _{4}(x)}=1$. We can use the exponent rule $a^{x y}=a^{x} \cdot a^{y}$ to separate this out into $\left(2^{2}\right)^{\log _{2}(x)} \cdot 4^{\log _{4}(x)}=1$. But $\left(2^{2}\right)^{\log _{2}(x)}=2^{2 \log _{2}(x)}=2^{\log _{2}\left(x^{2}\right)}$, so we can rewrite this as $2^{\log _{2}\left(x^{2}\right)} \cdot 4^{\log _{4}(x)}=1$. The logs and the exponents cancel, giving us $x^{2} \cdot x=1$, so $x^{3}=1$, so $x=1$.
4. Solve for x : $3^{2^{x}}=9^{4^{x}}$.

Solution: Since $9=3^{2}$, we can rewrite as $3^{\left(2^{x}\right)}=3^{\left(2 \cdot 4^{x}\right)}$. Take $\log _{3}$ of both sides to get $2^{x}=2 \cdot 4^{x}$. Take $\log _{2}$ of both sides to get $\log _{2}\left(2^{x}\right)=\log _{2}\left(2 \cdot 4^{x}\right)$. Using our log rules, we can separate this out as $x \log _{2}(2)=\log _{2}(2)+\log _{2}\left(4^{x}\right)$. We can bring down the x in the last expression to rewrite this as $x \log _{2}(2)=\log _{2}(2)+x \log _{2}(4)$. Since $\log _{2}(2)=1$ and $\log _{2}(4)=2$, this simplifies to $x=1+2 x$. Thus $x=-1$.
5. Solve for $x: \log _{4}\left(\log _{2}(x)+\log _{2}(8)\right)=1$.

Solution: We start by raising 4 to both sides to get $\log _{2}(x)+\log _{2}(8)=4^{1}$. Since $\log _{2}(8)=3$, we subtract that from both sides to get $\log _{2}(x)=4-3=1$. To get rid of the \log, we raise 2 to both sides to get $x=2$.
6. Solve for $x: \log _{\sqrt{12}}\left(\log _{2}(64) \log _{3}(x)\right)=2$.

Solution: To get rid of the $\log \sqrt{12}$, we raise $\sqrt{12}$ to both sides to get $\log _{2}(64) \log _{3}(x)=$ $(\sqrt{12})^{2}=12$. Since $\log _{2}(64)=6$, we can divide both sides by 6 to get $\log _{3}(x)=2$. To get rid of the $\log _{3}$, we raise 3 to both sides, so $x=3^{2}=9$.

